

Case study of Memsys pilot plant to concentrate high TDS/COD wastewater (For ZLD) from coal-to-chemical (CTX) industry in China

Memsys Water Technologies GmbH

Fuggerstraße 33, 86830 Schwabmünchen, Germany

+49 (0) 823 2807 9549 +65 91011205

Contact@memsys.eu Kui.zhao@memsy.eu

General procedure in CTX wastewater plant

Industry wastewater collected from surrounding CTX plants

Biological treatment to reduce most of COD from wastewater

Sand filter

UF

RO

TDS of RO brine is only 5,000~8000 mg/l

Such as vibrating RO, High pressure RO, electrodialysis. The concentrating range of these processes are 30,000~80,000 mg/l TDS.

RO brine concentration

Evaporating pool

Process flow of Memsys pilot test

Memsys pilot system in the RO plant

memsys pilot system had been run for 4 months in the RO plant for the RO brine concentration trial

Analysis of raw RO brine in the plant

Typical analysis of raw RO brine

Items	Unit	feed
COD	ppm	142
рН		7.4
TDS	mg/l	5260
TSS	mg/l	0.45
Conductivity	μS/cm	7980
SO ₄ ²⁻	ppm	1680
Fe	ppm	1.86
Ва	ppm	1.91
Sr	ppm	19.1
Ca	ppm	671
Mg	ppm	275
SiO ₂	ppm	71.6

- 1) The COD level in the RO brine is high;
- 2) There are significant Ca, Mg, Sr, SiO₂ and SO₄ in the feed, considering the high concentration target, a good softening process to remove scaling material such as Ca²⁺ and Mg²⁺ is very important, otherwise the performance and stability of MD process will be significantly affected

Water samples in the different concentration by Memsys

7000 μS/cm RO brine 40 mS/cm memsys brine 60 mS/cm memsys brine

mS/cm memsys brine 160 mS/cm memsys brine mS/cm memsys brine 190 mS/cm memsys brine 40 μS/cm memsys Distillate

Relationship between conductivity and TDS

• The maximum TDS this pilot testing reached is 270,000 mg/l (190 mS/cm);

Relationship between conductivity and COD

The high concentration of Cl⁻ might affect the accuracy of this COD result, but we believe the max. COD this testing reached was over 10,000 mg/l

- Memsys module can handle very high COD level in the concentrating process;
- High COD could change evaporating property of the feed, but shows very minor effect on the flux stability and distillate quality;
- The components of COD is not fully identified, considering many upstream dosing process and the wastewater was originally from methanol plant, this COD composition could be very complicated;

Ca²⁺, Mg²⁺ and SiO₂ analysis in the different concentration

- After softening, the flux is quite stable until the brine concentration is higher than 120 mS/cm;
- CaSO₄ and SiO₂ could be the main scaling material in the flow;

Boundary point of flux stability ~120 mS/cm

(TDS: 150,000 mg/l, COD: 2000~4000 mg/l)

Distillate quality during whole piloting period

- The conductivity of distillate is all the time stable and not affected by TDS and COD level:
- The distillate quality of
 24 hours operation mode
 is better;
- NH₃-N was detected in the distillate

Chemical cleaning in place (CIP)

CIP procedure			
Sequence	Duration (min)	T1-1	
Water flush	15 (until brine concentration < 10 mS/cm)	60 °C	
NaOH (1%) flush	30 min	60 °C	
Water flush	15 min	Stop heating	
HCl (1%) flush	30 min	Stop heating	
Water flush	15 min	Stop heating	
	Total: 1 h 45 min		

The comparison of high TDS sample with and without softening process

Without softening

Fresh brine (140 mS/cm) collected from brine line,

Comparison of flux stability with and without softening process (70 °C heating condition)

