

FAQ – frequently asked questions

The memsys process of thermal membrane distillation

www.memsys.eu

What are the process requirements?

Feed salinity (NaCl)
up to 220,000 mg/l TDS
or 80% of saturation concentration

- Filtered < 20μm

Heating temperature

 $60 - 90^{\circ}C$

memsys module

Low pressure steam

System pressure

700 - 50 mbar(a)

 Decreasing from hot to cold or end of module respectively

Cooling temperature

< 40°C,

min. 20°C difference to hot side

- Cold water (feed can be part of it)
- Dry cooling fans
- Wet cooling towers

What are typical concentrations and recovery rates?

- memsys achieves recovery rates resulting in brine concentrations close to saturation
- Maximum achievable RR decreases with higher salt content of feed

What is a recovery rate (RR)?

 Recovery rate is the ratio of distillate output versus feed input

How to use the diagram?

- Examples:
- Further concentration of RO-brine from 80.000 mg/l => RR of > 70% is possible
- B Desired RR: 50%

 => Inlet feed concentration
 can be up to 125'000 mg/l

What is the relation of flux and temperature delta?

- Flux requires a temperature difference (Δ T)
- Higher flux at higher temperature difference

What is Flux?

Flux is the specific distillate output flow per membrane area; unit: kg /(m²*h)
 (also l/(m²*h) or lmh)

Is there a difference with salty feed?

- Salt water starts boiling at higher temperatures compared to pure water
- Higher salt concentrations in the feed require a higher delta T to generate the same flux as with pure water

What are the relations of distillate production and membrane area?

More effects at constant membrane area?

- The required energy is reused more often with more effects
 - => better energy efficiency
 - => less distillate output

More effects and more membrane area?

- The distillate output can be increased with larger membrane area
 - => higher energy efficiency
 - => higher distillate output

What is the relation of TDS and flux?

- Fluxes of up to 10 l/(m²h) can be achieved
- Higher TDS lead to lower fluxes

What does the diagram show?

- The diagram shows results of flux of a memsys module in operation in dependence of the temperature on the hot side of the module and the salt concentration of the feed
- At higher heating temperature a higher flux is achieved
- The flux is reduced with increased salt concentration of the feed

What is the energy consumption of the process?

- **Specific energy demand:** (depending on boundary conditions and size of system):
 - 80...250 kWh/m³ thermal energy (related to an electrical equivalent of 12.7 ... 39.8 kWh/m³)
 - 1.0...2.2 kWh/m³ additional electrical energy demand (aux.)
- At MVC operation:
 10 ...18 kWh/m³ isentropic (~el.) energy demand
 (with optimal compressor)

Specific energy consumption

- is the energy needed to produce one m³ distillate
- Thermal (heat) and electrical energy is used to generate distillate at VMEMD
- Only electrical energy is needed if operated with a vapor compressor (e.g. GE)
- More effects lead to lower thermal energy demand for the process
- TVC further reduces the thermal energy demand

What is the footprint of MD compared to other technologies?

- Footprint for 6-fold stacked multiple train systems: 10 15 (m³/d) /m²
- Footprint for containerized small systems (50 m³/d) 2 4 (m³/d)/m²

Typical footprint of desalination systems (plant dimension, incl. service area, without pretreatment)

Sea water reverse osmosis:

5 (m³/d)/m² for small
 containerized R.O. units up to 28
 (m³/d)/m² for large plants (e.g.
 Barcelona Llobregat)

MED/MSF:

- 10 to 25 (m³/d)/m²
- Depending on size and design (tower system, parallel vessels)

What are scaling experiences?

- Only vapor passes the membrane, no liquids flow towards pores
- Cleaning procedures lead to full membrane recovery

Scaling is limited in the memsys VMEMD process:

- Liquids do not pass the membrane, but flow along the surface
- Surface of membrane and frame is polymer and not polar => no adherence
- Cleaning dissolves scaling
- PTFE membrane is not affected by chemicals
 (e.g. acids, antiscalants)

What are scaling experiences (2)?

- In case of over-saturation during feed concentration, created precipitants need to be held in solution or precipitated upstream of the MD process
- Marketready antiscalants have been tested and successfully prevented scaling without affecting the membrane
- Feedflow regulation enables reduction of scaling potential by concentration polarization

Effect of antiscalants if required

- Induction time is prolonged
- Antiscalants show effect on inhibiting the crystal growth process
- Cleaning agents can dissolve scaling in most cases
- Retarded scaling decreases scaling potential in the unit

Sources: Aquaver; Conference talk on 1st International conference on desalination using membrane technology, 7th - 10th April 2013, Mélia Sitges Hotel Congress Centre; Aquaver: The International Desalination Association World Congress on Desalination and Water Reuse 2013 / Tianjin, China REF: IDAWC/TIAN13-Dhakal memsys: Internal studies

What are scaling experiences (3)?

Test of antiscalants

- Scaling potential calculation with PHREEQC showed that North Sea Water while operating at 70% recovery and 70°C supersaturated with aragonite (CaCO₃), Calcite (CaCO₃), Dolomite CaMg(CO₃)₂, Magnesite (MgCO₃)
- The addition of antiscalants (BWA 2030 and COSUN bio based) prolongs the induction time of CaCO₃ at a feed dose of 3 mg/L in a tested range of S&DSI from 1.77 to 2.35 for more than 200 and 400 minutes, respectively
- Antiscalant COSUN bio based was found best as compared to BWA 2030. With this antiscalant even at a lower dose of 1 mg/L prolongs the induction time of CaCO₃ for S&DSI of 1.77 for more than 400 minutes

Sources: Aquaver; Conference talk on 1st International conference on desalination using membrane technology, 7th - 10th April 2013, Mélia Sitges Hotel Congress Centre; Aquaver: The International Desalination Association World Congress on Desalination and Water Reuse 2013 / Tianjin, China REF: IDAWC/TIAN13-Dhakal memsys: Internal studies

What chemicals are critical for the modules or the membrane?

- PTFE and PP are widely resistant against nearly all chemicals, extreme acids or bases.
- Only minimal restrictions for feedwater content

Feed liquids should <u>not contain</u> large amounts of (harmfull for PP/PTFE):

- Free chlorine, bromine
- Benzol, chlorobenzene
- Chromium-Tri-Oxide
- Cyclohexanon
- Dekahydronaphtalin
- Diisopropylether
- Amylacetate, Butylacetate
- Concentrated nitric acid
- Tetrachlorethane, Xylol
- Ethylene oxide, propylene oxide
- Bromtriflourid, chlortriflouride,
 - Substances decreasing the surface tension of water. e.g. surfactants, oil (100 ppm), strong organic solvents can cause wetting of the membrane

What are fouling experiences?

- Thermal and surface conditions limit microbiological growth
- Cleaning procedures achieve full membrane recovery

Bio-fouling is limited in memsys VMEMD:

- Temperature of feed is always higher than 60 – 80°C
 => microorganisms are not surviving these thermal conditions
- The membrane is resistive against anti-fouling chemicals

What is the demand for pretreatment?

- Suspended solids should be filtered, oil and surfactants need to be reduced to 100 ppm
- Tested cleaning procedures lead to full membrane recovery

What are the pretreatment requirements?

- Very limited need for pre-treatment due to membrane properties (PTFE)
- 20 µm filtering mostly sufficient
- pH adjustment for keeping carbonates in solution if necessary
- Membrane and frames resistant towards most chemical cleaning agents
- Limited amount of oil and surfactants
- Precipitation / flocculation in the unit must be avoided by according
 pre-treatment upstream

What are life time experiences?

- Full recovery of wetted membrane indicates long life time without degradation
- Experiences to date indicate:
 5 years+ lifetime in sea water desalination and
 2 years+ in organic waste water treatment and WPA

Membrane life is influenced by

- Mechanical stress(too high pressure differences=> not applicable here)
- Chemical influences
 PTFE membrane not sensitive
 against chemical attack
- Aging

 influence can only be
 investigated after many years
 of operation